Estimation of Area Under the ROC Curve under nonignorable verication bias
نویسندگان
چکیده
منابع مشابه
Bayesian ROC curve estimation under verification bias.
Receiver operating characteristic (ROC) curve has been widely used in medical science for its ability to measure the accuracy of diagnostic tests under the gold standard. However, in a complicated medical practice, a gold standard test can be invasive, expensive, and its result may not always be available for all the subjects under study. Thus, a gold standard test is implemented only when it i...
متن کاملEstimation of the area under the ROC curve.
The area under the receiver operating characteristic curve is frequently used as a measure for the effectiveness of diagnostic markers. In this paper we discuss and compare estimation procedures for this area. These are based on (i) the Mann-Whitney statistic; (ii) kernel smoothing; (iii) normal assumptions; (iv) empirical transformations to normality. These are compared in terms of bias and ro...
متن کاملRisk Estimation by Maximizing the Area under ROC Curve
Risks exist in many different domains; medical diagnoses, financial markets, fraud detection and insurance policies are some examples. Various risk measures and risk estimation systems have hitherto been proposed and this paper suggests a new risk estimation method. Risk estimation by maximizing the area under a receiver operating characteristics (ROC) curve (REMARC) defines risk estimation as ...
متن کاملBoosting the Area under the ROC Curve
We show that any weak ranker that can achieve an area under the ROC curve slightly better than 1/2 (which can be achieved by random guessing) can be efficiently boosted to achieve an area under the ROC curve arbitrarily close to 1. We further show that this boosting can be performed even in the presence of independent misclassification noise, given access to a noise-tolerant weak ranker.
متن کاملOptimizing Area Under Roc Curve with SVMs
For many years now, there is a growing interest around ROC curve for characterizing machine learning performances. This is particularly due to the fact that in real-world problems misclassification costs are not known and thus, ROC curve and related metrics such as the Area Under ROC curve (AUC) can be a more meaningful performance measures. In this paper, we propose a quadratic programming bas...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Statistica Sinica
سال: 2018
ISSN: 1017-0405
DOI: 10.5705/ss.202016.0315